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The EPR experiment is investigated within the abstract language of relativistic 
quantum physics (relativistic quantum logic). First we show that the principles of 
reality (R) and locality (L) contradict the validity principle (Q) of quantum 
physics. A reformulation of this argument is then given in terms of relativistic 
quantum logic which is based on the principles R and Q. It is shown that the 
principle L must be replaced by a convenient relaxation s by which the 
contradiction can be eliminated. On the other hand this weak locality principle s 
does not contradict Einstein causality and is thus in accordance with special 
relativity. 

1. INTRODUCTION 

The experiment of Einstein, Podolsky, and Rosen (hereafter referred to 
as EPR) describes a quantum physical system consisting of two particles 
which, according to quantum mechanics, are correlated with respect to the 
values of their observables although they cannot interact any longer and are 
separated by a spacelike distance. Einstein, Podolsky, and Rosen (1935) 
advanced this Gedankenexperiment originally in order to show that the 
nonlocal quantum mechanical correlations cannot correspond to correla- 
tions between the real situations of the two particles and occur only because 
of the incompleteness of quantum mechanics. This result initiated a series of 
investigations concerning the question whether quantum mechanics can be 
completed by means of hidden variables or not. Finally, Bell (1964) showed 
that the EPR experiment can be described by hidden variables only if they 
possess a nonlocal behavior with respect to the two subsystems also. This 
conclusion lead many physicists to accept that there exist some kind of 
nonlocal correlations between the real situations of the two subsystems. 
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However, the nature of the quantum physical nonlocality is often obscured 
in the literature and confused with the possibility of superluminal signals 
which would violate the Einstein causality. 

It is the purpose of this paper to clarify the conclusion which has to be 
drawn from Bell's result. Since hidden variables did not turn out to be 
significant for the EPR experiment, because they inherit a nonlocal behav- 
ior, we refer to the quantum mechanical description of the Gedankenexperi- 
ment. Although Bell's investigation concerns a hidden-variable description, 
it is possible to dispense with hidden variables and transfer Bell's result to a 
restriction concerning the interpretation of quantum mechanics. We presup- 
pose that the interpretation is realistic in the sense that it makes use of a 
language about individual quantum mechanical systems and their proper- 
ties. On the other hand, the language is very general and appropriate for any 
physical system. The formal structure of this language is also called "quan- 
tum logic" by the authors. In Section 2 of the paper it is shown that the 
principles underlying the argumentation of EPR, the reality and locality 
principles, which are consistent with our presupposition, lead to special 
relations among the propositions of the language. These relations can be 
used to derive an inequality between probability expressions with respect to 
propositions, which is the analog to Bell's inequality within the framework 
of the hidden-variables description. It is well known that Bell's inequality 
contradicts the statistical predictions of quantum mechanics which, nowa- 
days, are strongly confirmed by realizations of the EPR experiment. Hence, 
the EPR principles contradict the validity of quantum mechanics within the 
very general framework of the interpretation applied in this paper. 

In order to resolve the contradiction, the EPR principles must be 
altered in such a way that they do not allow the derivation of the above- 
mentioned special relations among propositions (which give rise to Bell's 
inequality). For the further investigation of the principles, we at first give a 
short account of the general quantum language which has been developed in 
previous papers and, then, apply it to the EPR experiment. This is done in 
Section 3 of the paper. It is taken into account that the quantum language 
should allow a description of quantum physical systems in space-time. This 
leads to a more concrete language where the validity of propositions 
depends on some validity regions in space-time. Since the relativistic limita- 
tions of signals are taken into account for the communication of proof 
results of propositions between different observers, the resulting language is 
called "relativistic quantum language." Indeed, the quantum physical re- 
strictions of this language which come from the incommensurability of 
propositions, and the relativistic restrictions, which come from light-cone 
structure of space-time, are most apparent in the case of the EPR experi- 
ment. 
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Within the framework of the relativistic quantum language the EPR 
principles are reconsidered. It is shown in Section 4 that the reality principle 
is already incorporated into the language as a criterion of truth of proposi- 
tions. This principle is a precondition of a real description of quantum 
physical systems and is not questioned here. On the other hand, the locality 
principle is not consistent with the description of a system by means of the 
relativistic quantum language and must be altered. We formulate a weak 
locality principle which is consistent with our language, i.e., which still 
respects the relativistic limitations of signals due to the light-cone structure 
of space-time and which does not contradict the validity of quantum 
mechanics via Bell's inequality. Hence the principle of Einstein causality 
need not be altered in order to account for the nonlocal correlations 
between the real situations of the two subsystems in the EPR experiment. 

2. THE EPR CONTRADICTION 

The analysis of the principles underlying the argumentation of Ein- 
stein, Podolsky, and Rosen (1935), leads to the result that the principles 
which allow for deriving the incompleteness of quantum physics are con- 
tradictory. The demonstration of this contradiction goes back to a result by 
Bell (1964) and will be reconstructed here in a simpler version due to 
Wigner (1970). In order to derive the contradiction, to discuss the physical 
significance of the principles, and finally to resolve the contradiction by 
changing one of them, we shall at first reformulate the principles of 
Einstein, Podolsky, and Rosen in a more rigorous and systematic way. 

2.1. The EPR Principles. The principles are the reality principle (R), 
which is formulated by EPR as a sufficient condition for an element of 
reality (a property as we say) pertaining to a physical system, the locality 
principle (L), which is implicitly assumed by EPR but is an important 
principle within their argumentation, and the validity principle (Q) of 
quantum theory concerning the Gedankenexperiment. Our reformulation of 
these principles is given by the following scheme: 

The value of a physi- I 
cal magnitude A can[ 

R:= be determined without I c'-'x 
lin any way altering I 
/the physical system S. l 

A property P which] 
corresponds to the[ 
value of the magni- / 
tude A pertains to the[ 
system S. / 

II II 
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L : =  

Q:=I 

Two systems cannot] A measurement with 
interact with each F x  respect to one system 
other, cannot alter the other 

II system in any way. 

L, !! 
L2 

The von Neumann-Dirac  quantum theory is valid [ 

where c3 denotes the metalinguistic implication " i f . . .  then . . . .  " 
These principles will be applied with respect to a Gedankenexperiment 

of the following kind: 
We consider a pair S = SI + Sn of two systems S I and S u such that S I 

and SI~ are strongly correlated with respect to three pairwise incommensura- 
ble magnitudes A, B, and C. Let us assume for simplicity that these 
magnitudes have only two possible values designated by "yes"  and "no ."  
Strong correlation means here that if the magnitude A, say, has been 
measured with respect to one system and the result is "yes,"  then the value 
of the magnitude A with respect to the other system is " n o "  and vice versa. 
Two magnitudes are incommensurable if and only if the result of the 
measurement of one magnitude is altered by the measurement of the other 
magnitude. We assume throughout the paper that measurements are ideal 
measurements of the first kind which do not alter the system more than 
necessary in order to determine the value of the corresponding magnitude. 

As an example of this Gedankenexperiment we refer to a pair of two 
sp in - l /2  particles in an IS o state, e.g., two protons in the singlet state after a 
pro ton-pro ton  interaction. This example goes back to Bohm (1951). With 
respect to each of the two systems Sj and S~ the spin observable o(t~) in a 
certain direction a with a: = cos~ can be measured. We denote the spin 
observables with respect to the systems S I and Sii by 0i(0 ) and Oii(~), 
respectively. Two spin observables with respect to one system, oi(v ~) and 
oi(v~'), say, are incommensurable if 19'4: ~mod ~r. We choose A "-- o(v~), 
B ~ o(v~'), and C "-- o(v a'') for appropriate v ~, ~', and v ~'' such that A, B, and 
C are pairwise incommensurable. The operator oI(~ ) is defined on the 
Hilbert space ~ i  with respect to system S~; its eigenstates are q0I+(v ~) and 
qfl-(O) ~ ~ x  with the corresponding eigenvalues + l and - 1 .  The fact that 
the observable oi(v ~) has the value + l [i.e., that the system S I is in the state 
q0�89 and therefore oi(~)r ~) = + 1.q0I+(v~)] corresponds to the prop- 
erty P~, and the fact that the observable oi(v ~) has the value - 1 corresponds 
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to the property 6-Jo ~. For the comparison with the above principles it is 
convenient to use the propositions a t : = " T h e  property Pot pertains" and 
~ a i : = " T h e  property 6) o ' pertains." With respect to the values of the 
observables A,  B, C we have the propositions a r, ~ a  I, bi, ~bx ,  ci, ~ c i  or, 
more precisely for our example a i (~ + ), ai(v ~_ ), bx(v~+ ), b i (~_ ), 
ci(v~+ ), ci(v ~_ ). For system S u the notions are analogous. The IS 0 state of 
S = S I -~-S n is given by the vector ~:=(1/ r174174 
q0~(v~)] in the Hilbert space ~ = ~ i |  

After the preparation of the pair of strongly correlated systems S x and 
Six, the two systems are separated into two space regions (i.e., regions with 
high registration probabilities for S I an SII, respectively), and there is no 
interaction between the systems. If now the magnitude A is measured with 
respect to system S~ and the result is "yes," we know because of the 
correlation that the value of A with respect to system S u is "no."  Since the 
premise of the locality principle L is satisfied, the conclusion L 2 is valid, 
which means that system S H is not altered in any way. Hence the premise of 
the reality principle R is also satisfied where the value of A is even 
determined, and we conclude that the property 6) o pertains to system Sit 
after the preparation. The argumentation is summarized by Figure 1. 

Since because of L the premise of R is satisfied for any of the 
magnitudes A, B, and C, i.e., since the values of the magnitudes A, B, and C 
with respect to system Stl  can  be determined without altering system S u in 
any way, all properties which correspond to the values of the magnitudes 
pertain to system S~I after the preparation. In this case we say that the 
magnitudes of system Sit are simultaneously objectified. Under these condi- 
tions we have: 

( a i ,U-~an ) n ( bi,U -~bl,) r"l ( c,,U-,Cl, ) =- V (1) 

strong correlotion 
in A 

measuring 
process 

valid 
propositions 

 n~ L,R  nol 

Fig. 1. The objectivity of 6-j. after the preparation of Sll. 
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where V denotes the "always true" proposition and A and t.) denote the 
logical connectives "and" and "or," respectively (which are systematically 
introduced in Section 3.1). 

Since the same argumentation can also be applied to system St we have 

( a,U-~a,)n( b,U-~b,)n( c~U-~c,) =-- V (2) 

also. Because of the pairwise incommensurability of the magnitudes A, B, 
and C, the value of at most one of the magnitudes can actually be measured 
with respect to one system and, by means of the correlations, the values of 
at most two of the magnitudes can actually be determined with respect to 
one system. Although the value of the other magnitude is objectively 
decided with respect to each system and respects the correlation, it is 
subjectively unknown. Only probabilities can be established for this magni- 
tude within series of measurements with respect to a large set of pairs of 
correlated systems. 

We show that a further elaboration of the above Gedankenexperiment 
leads to a result, a simplified version of Bell's inequality, which contradicts 
quantum theory in the above-mentioned example: 

L&R&QOA 

where ~ denotes the metalinguistic "always false" proposition. 
In order to derive the contradiction we consider three series of mea- 

surements, each with respect to a large number of pairs of correlated 
systems. Each series consists in the measurements of two different magni- 
tudes with respect to the two systems S I and S H of a pair. In the first series 
the magnitude A is measured with respect to system S I and the magnitude B 
is measured with respect to system Sxi; in the second series the magnitudes 
A and C and in the third series the magnitudes C and B are measured in the 
same way. By means of the relative frequencies of the "yes" results in both 
of the cases, the probabilities for the occurrence of these results can be 
experimentally determined. For a particular example of the Gedankenexperi- 
ment these probabilities can also be determined by quantum theory. The 
validity principle says that the quantum theoretical probabilities coincide 
with the experimentally detected probabilities. Let p(a I, b H), P (aI, c U), and 
p(c I, bH) denote these probabilities with respect to the first, second, and 
third series of measurements, respectively. 

A relation between these probabilities is predicted by the following 
conclusion, which involves the locality and the reality principles as they are 
used in the above argumentation. Each pair of measurements with respect to 
the two systems SI and S u determines the values of the corresponding 
magnitudes for each system and, therefore, decides on the truth and falsity 
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of the corresponding propositions. The "yes" results in the first series of 
measurements establish the truth of aiN-~b I and ~ a n n b  u with respect to 
S I and S n, respectively. It is sufficient to consider the propositions with 
respect to S I since the propositions with respect to S u are given by means of 
the correlations. From the above relation (1) it follows because of a in  ~b x = 
aiN~binV that aiO~bi=--aln-~bi n (clU~ci). Thus we have for the 
probability pi(aN~b) that a and -~b are true with respect to system SI: 

pI( an-~b ) = pi( an-~bnc) + p,( an~bn-~c) 

Analogously we have 

pi (an~c)  = p i (an~cnb)+ Pi (aN~cn~b)  

p i (  c n ~ b  ) : pi( cN~bNa ) + pi( cn-~bn~a ) 

It follows from these three equations that 

p i ( a n  ~b)  ~< p i ( a n  ~c)  + p i ( c n ~ b )  

Since the "yes" results of the measurements of A and B with respect to the 
two systems S I and S n actually determine the truth of the proposition 
alN~b I, it follows that the probability P(ai, bu) must be equal to the 
probability P I(aN--1 b). Therefore, the above inequality must also hold with 
respect to the experimentally or theoretically established probabilities for 
the "yes" results of the pairs of measurements. In this way we arrive at the 
prediction of the above inequality for these probabilities: 

p(ai, bn) ~< P(al, cII) "~ P(Cl, blI) 

which is a simplified version of Bell's inequality for the Gedankenexperiment 
considered here. The derivation of this inequality is summarized by Fig- 
ure 2. 

In our above example of the pair of two spin-l/2 particles in the tS 0 
state, the quantum theoretical probabilities are 

7s in  ~Sa, b p r  b l l ) =  l �9 21 

p r  I c i i ) = l .  21 , ~sln ~Oa, c 

p r  l �9 21 ~sln ~Oc, b 

where Oa, b is the angle between the directions a and b corresponding to the 
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E A B no 

I 
plol, bII) J < 

I 

-... .  
p1(an-~b) _< 

p{oI,CII) 

pilon-~c) + pz(cn'~b) 

Fig. 2. The derivation of the inequality. 

observables 0(8) and o(#'), etc. But the predicted inequality 

sin2�89 b ~< sinZ�89 c + sin2�89 b 

cannot be satisfied for arbitrary angles. For instance it is easy to demon- 
strate that the inequality is not valid if a, b, and c are coplanar. Thus we 
have finally derived the contradiction 

L&R&QOA 

which, indeed, can be called an EPR paradox in the strong sense of a 
contradiction. 

2.2. The Evaluation of the Principles. In order to resolve the contradic- 
tion between the three principles L, R, and Q at least one of them has to be 
altered. 

Concerning Q, the question has been investigated whether quantum 
theory is valid in the special case of correlated systems or not. A series of 
experiments has been performed as realizations of the Gedankenexperiment 
and has confirmed Q (Wu and Shaknov, 1950; Kocher and Commins, 1967; 
Kasday, 1971; Kasday et al. 1970; Freedman and Clauser, 1972; Clauser, 
1976; Lamehi-Rachti and Mittig, 1976; Fry and Thompson, 1976; Aspect, 
Grangier, and Roger, 1981. For a review compare Clauser and Shimony, 
1978). 

The reality principle R is a meaningful principle concerning the con- 
ception of the language of quantum physics. It seems to establish a minimal 
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connection between the observational language of physics and the concept 
of properties of a physical system. This means that whenever a language for 
physics is constituted as a language about physical systems and their 
properties, the reality principle R must be accepted. 

The retention of the two principles R and Q leads to the query of the 
locality principle L. As the above argumentation shows, the EPR contradic- 
tion can only be resolved if it is assumed that the measurement of a 
magnitude with respect to one system alters the other system in some way. 
In this case, and only in this case, the reality principle can no longer be 
applied to deduce the validity of the above equations (1) and (2) and the 
simultaneous validity of two propositions with respect to each system in the 
above experiment. Indeed, the necessity of the locality principle L is not 
demanded by any physical considerations. In particular, it does not follow 
from the theory of relativity. The theory of relativity incorporates only the 
weaker principle K of Einstein causality, which can be formulated for our 

K:-- 

aims as 

I 
Two systems cannot 
interact with each 
other. 

II 
Li 

A measurement of a 
property with respect 
to S~ cannot alter S u 
in such a way that a 
transmission of sig- 
nals from S I to S n 
with v > c  becomes 
~ossible. 

II 

K2 

The principle K should still be valid in a relativistic quantum theory. It 
follows from these considerations that the locality principle L has to be 
altered into a weaker principle s such that the following holds: 

(i) Lc3s 
(ii) 3 ( s  (i.e., the negation of K is not derivable from s 

(iii) q(s  (i.e., the principle s must not contradict R 
and Q). 

The question how to replace L by the weaker principle s which is reason- 
able for quantum physics and satisfies the conditions (i) to (iii) can only be 
answered within the framework of relativistic quantum physics. A general 
language for relativistic quantum physics will be applied in Section 3 and 
the weaker locality principle s will finally be formulated in Section 4. 
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3. THE DESCRIPTION WITHIN THE GENERAL LANGUAGE 
OF RELATIVISTIC QUANTUM PHYSICS 

In order to compare the space-time description of the system S = S x + 
S u with the EPR principles, we apply the abstract language of relativistic 
quantum physics to S. This formal language S u is built up from elementary 
propositions which are interpreted as statements about certain properties 
with respect to S. The EPR principles can then be regarded as metalinguis- 
tic statements about Su, the validity of which will be examined in Section 4. 

For the construction of the language Sv, also called the universal 
language for S, two different aspects must be taken into account. At first we 
consider the language S(@) of an observer who is located in a well-defined 
space-time region ~ of the Minkowski space 63L and who performs his 
experiments in ~ .  S(@) is also called the local language with respect to @. 
$(@) is the formal quantum language without any relativistic constraints. A 
detailed investigation of the formal language has been given by Stachow 
(1976, 1978), Mittelstaedt (1978), Mittelstaedt and Stachow (1978) and 
Stachow (1980, 1981a, b). Since it is assumed in our Gedankenexperiment 
that spin measurements are performed with respect to the systems S x and S H 
in local regions @i and @ii, respectively, we shall consider the local 
languages $(@i) and S(@H), which are the formal quantum languages for 
the two systems S I and SII. In a next step, which is justified in Section 3.2, 
we shall consider the language S u for the compound system S = S x + S u. 
Since this universal language comprises the local languages S(@I) and 
S(@H), we must take into account the relativistic constraints with respect to 
its propositions. 

3.1. The Local Language. The formal language for one of the systems, 
S I, say, can easily be constructed. For a general account of the formal 
quantum language we refer to Stachow (1980). However, before we shall 
apply it to the special case of a spin-1//2 system, it is useful to summarize its 
main features. 

The language is constituted as a language for an individual physical 
system S and its properties. Those propositions, the truth and falsity of 
which can be decided by ideal measurements of the first kind, are called 
material propositions. If a material proposition a is tested with respect to a 
system S the preparation of which is formulated by the proposition W and 
if a is true, we write S(W)~a. If a is false we write S(W)F~a. The proof 
possibilities are illustrated by the following diagram also: 

a 

s (  w )  _ 
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Compound propositions are generated by the material propositions and 
the logical connectives f'), U, D, ~ and the sequential conjunction m which 
can be defined by proof trees. For example, 

k ( a, b'~") 

aUb true 

aUb false 

where the branching represents the temporal order of successive experimen- 
tal tests, k(a, b) states the commensurability, and/T(a, b) states the incom- 
mensurability of a and b; 

) a m b true 

amb: s ( w )  arab false 
~a 

Two propositions A and B are said to be value equivalent (A = B) if and 
only if one proposition can be replaced by the other one without thereby 
influencing the value of the proposition. A and B are said to be proof 
equivalent (A -- B) if and only if within any proof process in which one of 
the two propositions occurs it can be replaced by the other one without 
thereby influencing the outcome of the proof process. Obviously the latter 
equivalence is stronger than the first one. It is convenient to proceed from 
propositions to equivalence classes with respect to the proof equivalence --. 

We consider the experimentally well-confirmed hypothesis that to each 
logically connected proposition A there corresponds a material proposition 
a such that A and a are value equivalent. This hypothesis means that a proof 
of A, instead of applying the procedure according to the proof tree for A, 
can also be performed by a measuring process for a without thereby 
influencing the values of the propositions. This hypothesis imposes a 
structure on the set E of material propositions rood ---- which is an orthomod- 
ular lattice (E, A, V, 9)  such that the lattice elements are inductively given 
by A A B =  AAB, A V  B =  A U B , ~ A =  ~ A .  

The set of logically connected propositions mod ~ forms a quasi- 
Boolean algebra (cf. Rasiowa, 1974) and the set of sequential conjunctions a 
Baer*-semigroup (cf. Stachow, 1980). 

In the special case of a spin-l/2 system S, the set of material proposi- 
tions E(S) is given by the set (a(~+)}~U {A, V}, where ~ runs through all 
angles from 0 ~ to 180 ~ A is the "always false," and V the "always true" 
proposition the proofs of which do not afford any experimental manipula- 
tion with respect to the system. The lattice (E(S),  A, V,~)  is illustrated by 
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V 

al ) 

/X 

Fig. 3. The lattice of a spin-I /2  system. 

Figure 3, where the horizontal line represents the continuum of all proposi- 
tions a(O+ ) with ~a(~+  ) :=a(~_  ):=a(180 ~  ~), and the other lines rep- 
resent the implication relation <<-, which is given by A <<- B O A  =-- A A B. 

The above language refers to an observer who is located within a finite, 
compact space-time region 6~ C_ ~ and performs the proofs of the proposi- 
tions in ~ .  In order to describe the EPR Gedankenexperiment we now 
consider two local languages S ( ~ I )  and $ ( ~ i i  ) which refer to two space- 
like separated regions ~x,~nC_~Y'~ where spin measurements are per- 
formed with respect to the two spin-l/2 systems S I and S n. The discussion 
in Section 3.2 of this section will show that the universal language for the 
description of the compound system S =  S 1 + Six is generated by the 
two local languages S(~x)  and $(~ under the condition that 
k(ai(O ), au(~')) ---- V for all t~, t~', i.e., all material propositions with respect 
to system $I are commensurable with all material propositions with respect 
to system S H. The lattice (E (S ) ,  A, V ,~ )  which is generated by the two 
lattices (E(SI), A, V ,~ )  and (E(SH),  A, V , ~ )  under this condition is very 
complicated and has not yet been investigated in detail. However, if the 
completeness, the atomicity, and the covering law are added as further 
axioms, its Hilbert space representation leads to some easy characteri- 
zations. 

For the following we need a few results only: The propositions 

a,(~+)A au(va_), ai(v~L)A an(va~), a,(v~+)A aH(~_ ) 

W:= A {(a,(~+)Aau(v ~_))v(ax(~_)AaH(~ +))} 

are atoms (least elements ~ A )  of the lattice ( E ( S ) , A , V , ~ ) .  In the 
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Hilbert space representation, atoms correspond to vectors which describe 
"pure  states" of the system S. The product states r ( v~ ) | ~n (0),  ~I_ (0 ')  | 
~0~(0'), ~ I  (v'~)| determine that system S I is in the states ~0I+(~), cp I_ 
(#'),  r respectively, and system SII is in the states ~0n(v~), r r 
(v~'), respectively, which correspond to the atoms of the local language 
$(6XI), namely, ax(v~+), ~ai(v~_), a i (~+) ,  respectively, and of the local 
language S(rXn), namely, ~ a l i ( ~  + ), ali(V~_ ), an(v~ + ), respectively. There- 
fore the conjunctions ai(v~+ )A aii(v ~_ ), ai(v ~" )A an(v~. ), and ai(v~+ )A 
ail(0~_ ) are atoms of the universal language Sv- The IS 0 state ~ : =  
(1/r174174 determines a strong negative 
correlation with respect to each direction a with a z = cosy ~. This means 
that, if the compound system S is prepared in the state r and a measure- 
ment of the observable oi(~ ) is performed in 6X~ with value + 1, then, 
after the measurement, the system S is in the state WI(#)| and 
this is the case for arbitrary angles ~. It is easy to see that the proposi- 
tion W: = ~ {(ai(v~+ )A ali(V ~_ ))V(a~(#_ )A axl(V~+ ))} satisfies the condi- 
tion that, after a successive proof of the proposition a~(O+ ), the proposition 
a i (v~+)Aal i (~_)  is true, and that this is the case for arbitrary angles 0. 
Namely, the fact that, after the preparation of the system S such that W was 
true, the proposition a~(~+ ) is true, is stated by the sequential conjunction 
W r] ax(v~ + ). We show now the following: 

Theorem 1." 

(a) Wna,(O+)~<[Wna,(O+)]- ai(v~+)Aan(v~_) 

(b) Wlqa,(v~+ )lqaii(v~+ )<~[Wnai(v~+ )lqali(Va'+ )] 

~. al(v~ ) A an(O; ) 

Remark. Here we make use of the result (Stachow, 1980, p. 286) that 
for any sequential conjunction ~ there exists a logically connected proposi- 
tion [~] which is a supremum for ~ in the sense that ~ [ ~ ]  and 
~<6~&[~]~<6~  for any sequential conjunction ~ .  If W is a material 
proposition we have 

Wna,(O+)~<[Wna,(O+)]----(W V-~a,(,~+)) A a,(O+) 

and 

W n ai(l~ + ) n a l i ( 1 ~  ) ~ [W n ai(l~ + ) n ali(l~+ )] 
=[[Wnai(O+)]nan(~-)] 
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Proof (a) Inserting the explicit form of W we obtain 

(W V.mai(o` + ) )A  ai(o` + ) ~ ( (ai(o` + )A au(O'_ )) 

V (a , (o`_)A au(o` + )) V-~a[(o`+ )} A aI(o` + ) 

al(o` + )A ail(o`_ ) 

Since (W V~a[(o`+ ))A ai(o` + ) ~ A and ai(o` + )A an(o`_ ) is an atom, we 
finally have 

[ W n  ai(o`+) ] --(WV--~ai(o`+))Aal(o`+)=--al(v~+)Aau(o`-) �9 

Similarly we have 

[WF]aII(O`+)] ~(WV-.maII(O`~))AaII(O`+) ~a  I(o`t_)Aa n(~+) 

(b) [[wna,(o`+)]nan(O;)] ~ ( ( a i ( o ` + ) f a i l ( o ` _ ) )  

V.-~aii (O`~_)) A t2ii (O  ̀~_ ) 

~<(ai(o` +)vmalI(o` +))A(a l I (o`  )V-maii(o` +))AaII(o` ~_) 

---- (al(o`+) V.mail(o`+ )) A an(o`+ ), sinceau(o`_)V-maIi(o`+)~V 

~ ((al(o` + )A an(o` ~_ )) V ((--mQII(O  ̀+ )A an(o` + )) ~ ai(o` + )A an(o` + ) 

Since a[(o`+ )A an(o` + ) is an atom, we obtain 

[ [Wnai(o` +)] nan(o` +)] ~al(o` +)faII(o` ~) 

If, after the preparation W of the system S =  S I + SII , the proposition 
axi(o` ~_) has been tested but the proof result is not known to the observer, 
his information is confined to the truth of the proposition W lq (an(o` + )U 
aix(o`'_ )). The supremum of this sequential conjunction, which represents 
the least logically connected proposition (containing the greatest informa- 
tion) which can be predicted in a situation where the sequential conjunction 
is known, is given by 

n ' [w  n (,,.(o~_) Ua.i(O'_ ))] W (a . (O. )Ua, , (O '_) )  ~< 

=[  w n a,,(o`~_ )] u [ w n a,,(o'_ )] 
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If probability propositions are added to the formal language, the informa- 
tion after the test of an(0~_ ) without knowing the result may be formulated 
by the Gemenge 

a t F ( W ; a i i ( ~ . ) ) : : { p ( w ) ( a n ( ~ + ) ) , p ( w ) ( a l i ( 0 , ' _ ) ) ;  i i (~ + ) , a I I ( ~ '  _ )}  

where the probability expressions represent the conditional probabilities for 
the proofs of ali(t~ + ) and au(O'_ ) after the system has been prepared in W. 
For the introduction of probability propositions into the formal quantum 
language compare Stachow (1979, 1981c). Hence we refer to W • (aii(~ + ) 
U a n ( ~ ' ) )  as the sequential Gemenge proposition and to [ W ~ ( a n ( ~ + ) U  
an(O'__ ))] as the material Gemenge proposition. 

Another interesting question concerns the least propositions W(S I) and 
W(Su) with respect to the systems S I and S n which can be predicted if it is 
known that the compound system S : S I + S u is prepared in W. 

Theorem 2. W(SI):--VI, W(SII)= Vn . 

Proof. The least proposition W(SI) is an element of the lattice 
( E ( S I ) , A , V , ~ ) .  Let us assume that W(SI)=aI(~9+) for some angle ~. 
Then we have W ~  < ai(~9 + ) also and therefore W --= W A ai09 + ). But 

W Aai(t~ +) ~ {(ai(19 +)AQII(L~ ) )V(ai( l~_)Aai i ( t~+))}  Aai(l~ +) 

~ (ai(19 + )A aii(~_ )A ai(t~ + )) V (a i (~_ )A aii(19+ )A al(~ + )) 

= ai(19 + )A ai/(~9_ ) 

Since W and ai(~9+)Aail(0_)  are different atoms, it follows that W A 
ai(0+)-------A, a contradiction to  W=--WAaI(19+). Therefore, it is only 
possible that W(SI) ~--- VI, and W(Sn) =-- VII analogously. �9 

The propositions W(SI) and W(Sn) are called the reductions of the 
proposition W=:W(S)= W(S I +Sxi ) with respect to the systems S I and 
SII. 

3.2. Relativistic Considerations. A formal description of the EPR ex- 
periment, which is convenient for an adequate treatment of the locality 
principle, the nonlocal correlations, and the causality problem, must take 
into account quantum physical as well as relativistic aspects. This means 
that the formal quantum language S u must be further specified in order to 
take into account also the principles of special relativity. A relativistic 
quantum language of this kind was recently developed systematically 
(Mittelstaedt, 1982), to which we will refer here. 
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The preparation W of the system S as well as other measurable 
propositions A, B . . . .  are assumed here to be time independent in the sense 
of a Heisenberg representation. In the framework of the relativistic quantum 
language this means for the present that these propositions are related to the 
entire Minkowskian space-time ~ .  On the other hand, the measuring 
process for a given proposition A is performed in a finite region ~ C_ 9~ of 
space-time and hence the validity of this proposition cannot be extended to 
the entire space-time ~ but must be restricted to a certain validity region 
M-- M(A)C_~.. 

According to the investigations mentioned, the validity region of a 
proposition A, which is measured at the event point x * ~  91L is defined as 
follows. ~ If W is the initial preparation of the system S, the history of S due 
to the A measurement is described by W I-1A and the state after the 
measurement by [W FI A] ~ (W V-~ A) A A. The validity region M 0 = Mo(W ) 
of the initial proposition W is then given by the causal past J(-)(x*) of the 
event x* (Hawking et al., 1973) and the validity region M I - - M : ( [ W  ~ A]) 
for the state after the measurement by the complement J ( - ) (x*)  of the set 
M o with respect to 9]L. Clearly the region M: includes also events z*, which 
have spacelike distance to the measuring event x*. 

If once the validity regions for a single measuring process are defined 
in this way, one can consider the more complicated measuring program, 
which consists of two measuring processes for propositions A and B at event 
points x* and y*, respectively. If the events x* and y* have timelike distance 
with x~ < Y0*, say, then we have two subsequent measurements described by 
W N A  and (WRA)RB,  and consequently three validity regions 34o= 
J~-)(x*), M I =J(-)(y*)nJ~-)(x*), and Mz=f~-)(y *) which correspond 
to IV, [W n A], and [W n A m B], respectively. If the events x* and y* of the 
measurement have spacelike distance, i.e., x* - y*, the history of S and the 
corresponding validity regions are more complicated. Here we have to 
distinguish four validity regions M 0 = J(-)(x*)nJ(-~(y*), M 1 = J ( -~(x*)N 
f~-)(y*), M2=J~-)(x*)nJ(-)(y*), and M3=J(-)(x*)Of(-~(y *) which 
correspond to the propositions W, [W n A], [Wm B], and [W rq A V1B]. A 
division of the Minkowskian space-time o-3~ into distinct regions M~ which 
are determined by measuring processes will be called an M chart of aYL. 

If we apply these considerations to the EPR experiment, we obtain the 
following description of the history of the system S -- S I + S n. The measur- 
ing program of this experiment consists of two parts, a measurement of the 
proposition ai(t~ + ) at the event point x* and a measurement of aii(v~+ ) at 

kFor simplicity's sake we will assume here that the finite region ~ C t')lL in which the measuring 
is performed can be replaced by a single event point x*E ~. For the present investigation this 
idealization is not problematic. 
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Fig. 4. The history of S in Minkowskian space-time. 

the event y*. The points x* and y* have spacelike distance, x* ~ y*, and the 
coordinate system of the observer is chosen such that xJ < y~'. If we assume 
that the actual results of the measurements at x* and y* are ax(v~+ ) and 
an(O+ ), the history of S is completely determined and can be represented 
by the respective M chart in ~3L (Figure 4). The initial preparation W is 
relevant for the region Mo=J(-)(x*)NJt-)(y*). In Mt=J(-)(x*)A 
fl-)(y*) we have to take into account the result of the measurement at y* 
but not that at x*. For this reason and on account of the correlation 
between S I and Six, we have in M l the state [Wnau(v~+)]=--ai(O'_)A 
aH(O~_ ). Analogously we obtain for M2=fl-)(x*)AJ(-)(y *) the state 
[Wrqai(O+)]----ax(v~+)Aau(O_ ). In the last region M 3 = f l - ) ( x * ) N  
fl-)(y*) we have the final result of the EPR experiment, namely, the state 
[W I-1 ax(v~+ )1-7 aii(vq+ )] ----- ax(v~+ )A au(O ~_ ) (cf. Theorem 1). 

However, the following point of view must be taken into account. The 
history of the system just described is known only to an "ul t imate" 
observer, who is completely informed of the measuring program and of the 
outcomes of the ax(O + ) trial in x* and the an(v~+ ) trial in y*. According to 
special relativity and Einstein causality, classical signals (light, sound, etc.) 
can be transmitted from x*, say, only to points z*~J(+)(x*), where 
J(+)(x*) is the causal future of x*. This means that the described history of 
S is relevant only for an observer B v, the space-time point 4(Bt/) of which 
is contained in the domain J(+)(x*)NJ(+)(y*). 

All other observers are only partly informed about the outcomes of the 
ai(O + ) - -and  au(~  ~_ )--trials at x* and y*, respectively, and will thus give 
an incomplete "partial" description of the history of S. However, we 
assume that all observers are completely informed about the measuring 
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Fig. 5. The partial description of the history of S by the observer B l with position ~E D 2. 

program. Generally we have to distinguish four distinct domains 
D), D 2, D 3, D 4 of 9]L which correspond to different possibilities of informa- 
tion and which are given by (Figure 5). 

D, = nJ<+>(y*), 

D, = f(+)(x*) 

D2 = J(+)(x*)  nJ +>(y *) 

D4 = J(+)(x*) nJ(+)(y *) 

For the partial description of the history of S by an arbitrary observer B, it 
is important which information is available for him, i.e., in which of these 
domains D r his space-time point ~(B) is located. 

These considerations are important in particular for the observers B~ 
and B n, who actually perform the measurements in x* and y*. Let us 
assume that the position ~(BI) of B I is in D 2 (Figure 5). The history of S 
described by B I then begins again with the preparation W in M o. In region 
MI the outcome of the ali(V~+ ) trial in y* would be relevant, but this result 
is not available for B I. According to the measuring program B I knows only 
that in y* the ail(V~+ ) trial was performed at all. Hence he describes the 
development of S in Mt by the sequential "Gemenge" proposition 
W N(an(va+)toaxl(v~')) and the state of S in this region by the logical 
"Gemenge" proposition [ W N an(v~+ )] tO [ W/q a ix( 0'__ )]. In M 2 the outcome 
of the ax(v~ +) trial at x* is relevant and here the observer B I knows the 
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Fig. 6. The partial description of the history of S by the observer B n with position ~E D 3. 

actual result. Hence he describes S by the same state a i (~  + )A ali(V ~_ ) as in 
the complete description of the history of S. Finally, in M 3 the observer B I 
has to take into account the outcome of the ai(v~+ ) trial at x* and the fact 
that the ail(V~_) measurement at y* was performed at all. Hence he 
describes the state of S in M 3 by the disjunction of the two states 
[W • ai(~9 + )M ali(V~_ )] and [W ~q al(va+ )I-1 ali(,0"_ )] which correspond to 
the two alternatives of the sequential "Gemenge" proposition W M (a l i (S  + ) 
Uai1(~9'_ )) in Mj (Figure 5). Completely analogous considerations hold for 
the observer a l i  with a position ~(BII)E D 3. (Figure 6). 

4. THE RESOLUTION OF THE EPR PARADOX 

4.1. The Principles R, L, and Q. In the framework of the universal 
language Su, which was applied to the EPR experiment in Section 3, we 
reconsider now the contradiction between R, L, and Q demonstrated in 
Section 2. The principle Q, which states the validity of quantum physics, is 
assumed to be true throughout this paper. It is empirically well established 
and basic for the universal language S u. The "reality principle" R was 
accepted in Section 2 as a necessary precondition of a language about a 
physical system and its properties. Hence within the framework of S v this 
principle should turn out to be already incorporated in this language. The 
premise R I states that a proposition A, say, can be tested at the system S 
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with preparation W without thereby influencing the system in any way. 
Since in S U the successful test of A is described by W • A, the premise RI 
reads W------W fq A. The conclusion R z states that the system S possesses a 
property PA, which corresponds to A, i.e., S(W)~A or W ~  < A. The "reality 
principle" R = RI O R  2 can thus be expressed by 

(R) W--WnAC~S(W)~A 

It is obvious that R is not a new principle which can be added to the 
language Su, since it is already incorporated into St:. In this language it 
appears as a criterion for the truth of A in the system S with preparation W, 
i.e., for S(W)~A. If S(W)~A holds, we also say that the property 62 A which 
corresponds to A is "real"  in S. 

If once the rearty of a property 62 A at system S(W) is explained by 
W ~  < A, the objectivity of 62 A at S(W) can be defined by: W<~ A or W ~  < -~A 
(Mittelstaedt, 1979; Burghardt, 1980). The objectivity of A in S(W) means 
that it is objectively decided whether A or ~ A  holds in S(W), but subjec- 
tively unknown. Hence the objectivity concept incorporates both the objec- 
tive decidedness and the subjective ignorance of the observer. It is well 
known that in general a proposition A is not objective with respect to W. 
However, by a measuring process for A the initial state W is in a first step 
transformed into a Gemenge F = F(W; A) of two alternatives. The proposi- 
tion A is thus objective with respect to F. In a second step the actual 
measuring result can then be obtained simply by reading the outcome of the 
measurement. 

The "locality principle" L = L t ~ L 2 was already questioned in Section 
2 and will in fact turn out to be the origin of the EPR contradiction. The 
premise L I states that two systems S I and S n cannot interact. The prepara- 
tion W of the EPR system corresponds to the tS 0 state of two subsystems 
which do not interact. Moreover, since the event points x* and y* of the 
measuring processes are assumed to have spacelike distance, the measuring 
process at x* cannot lead to an interaction between S t and the system S n at 
y*. Hence the statement of the premise L~ is realized by the EPR experi- 
ment and thus the implication L = L~ ~ L 2 can be applied to this situation. 

The conclusion L z states that the measuring process at system S t, say, 
cannot influence the other system S n in any way. However, this statement 
does not correspond to the EPR situation. According to the M chart of 
S t + S n the change in the state description due to the measuring process at 
x* is relevant for all events z*E J t - ) (x*) ,  in particular for the event y* of 
the S n measurement. Hence by an a~(~+ ) measurement at S t in x* the state 
W(SH)=V n of system Sn is transformed into the Gemenge Fxi(~) = 
F(W(Sn);  an(O + )), i.e., the observable aii(v~+ ) is objectified in S n, even if 
the two subsystems have spacelike distance. 



Einstein-Podolsky- Rosen Experiment 537 

We thus find that according to the locality principle L = L 1 0 L  2 the 
measuring process of a i (0  + ) at S I in x* should not have any influence on 
the system S n in y*, whereas according to the relativistic quantum language 
due to this measuring process the observable an (#  + ) is objectified in S n 
and that irrespective of the distance between S I and S n. Consequently the 
locality principle L does not hold generally in relativistic quantum physics, 
and in particular not in the case of the EPR experiment. Hence it is obvious 
that the contradiction between Q, R, and L mentioned above can be traced 
back to the invalidity of the locality principle L. 

4.2. The Relaxation of the Locality Principle. Since the locality princi- 
ple does not hold generally in relativistic quantum physics, we are now 
going to formulate the relaxation of the locality principle L mentioned in 
Section 2, the weak locality principle s which fulfills the following three 
requirements: 

(i) L Os 
(ii) q ( s  (SqK) 

(iii) q ( L & R & Q O A )  
A weak locality principle s which is in accordance with these postulates, 
reads s = L t ~ s  and 

s The measurement of an observable A x at S I 
can at least have the effect that an observable A n 
is objectified in Sn. 

It is obvious that s is a relaxation of L 2, which is sufficiently weak in order 
to allow for the objectivation of observables in spacelike distances in 
accordance with the state description by means of M charts. Hence we have 
L 2 0 s  2 and L ~ s  such that the requirement (i) is fulfilled. 

According to the second postulate the relaxation s must be sufficiently 
strong in order to prevent violations of Einstein causality by means of 
superluminal signals. In the relativistic quantum language Su, the descrip- 
tions of the quantum physical history of a system S, which are given by 
different observers B, B', must not contradict each other. This requirement 
leads to a consistency postulate for g u (C postulate), which states that 
propositions A and B, which are provable at events x* and y* with spacelike 
distance, are commensurable. Together with a theorem (L theorem) con- 
cerning the measuring process one thus arrives at the important result (LC 
theorem) that the probability p(w)(B) of B in y* with respect to W is the 
same as the probability p(r(w;A))(B) of B with respect to the Gemenge 
F(W; A) which is generated from W by a test of the proposition A in x*, 
provided x* and y* have spacelike distance. 
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weaker locality principle s which can be founded within the framework of 
the relativistic quantum language S U. In this way the EPR paradox is 
resolved. 
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